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Abstract

Speech signal reverberation due to reflections in a physical ob-
stacle is one of the main difficulties in speech processing as
well as the presence of non-stationary background noise. In
this study we explore DNN-based single-channel speech dere-
verberation with state-of-the-art performance comparisons. We
propose a CNN auto-encoder architecture with skip connections
focusing on real-time and low-latency applications. The pro-
posed system is evaluated with the REVERB challenge dataset
that includes simulated and real reverberated speech samples.
Our experimental results show that the proposed system has su-
perior results on the challenge evaluation dataset as opposed to
a baseline system that uses deep neural network (DNN) based
weighted prediction error (WPE) algorithm. We also extend
the comparison with state of the art systems in terms of most
commonly used objective metrics and our system achieves bet-
ter results in the most of objective metrics. Moreover a latency
analysis of the proposed system is performed and trade-off be-
tween processing time and performance is examined.
Index Terms: Speech dereverberation, Speech enhancement,
low-latency, U-Net, convolutional neural networks

1. Introduction
Background noise and reverberation are two of the main in-
terferences known to considerably degrade the quality of sig-
nal that are gathered within naturalistic scenarios. Background
noise might occasionally be present in a captured speech but
particularly with the usage of distance microphones reverbera-
tion could be constant issue for the speech processing. Although
it has been studied for many years, speech dereverberation re-
mains to be a challenging problem especially for single channel
and low-latency applications.

Earlier studies [1, 2, 3, 4] addressed the dereverberation
and noise reduction problem with several algorithms. How-
ever since they individually used different evaluation data it
was difficult to make fair comparison between the systems. The
REVERB challenge [5] put together a common dataset for the
evaluation of the dereverberation algorithms which were de-
veloped community-wide. A study based on the modification
of the direct-to-reverberant ratio (DRR) was proposed in [6]
and applied successfully to the single channel scenario. In
another study [7] used a transformation in autocorrelation do-
main, called zero phase procedure, in order to detect and re-
move the non-periodic corruption. Wisdom et al. [8] ap-
plied the short-time fan-chirp transform (STFChT) to extend
the length of the short-time Fourier transform (STFT) analysis
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window to achieve an overcomplete time-frequency representa-
tion. Whereas, with the clear success of DNN based methods in
recent years, [9] and [10] proposed a learning based approach
and used deep neural networks (DNN) to find a transformation
from reverberant spectrogram to the corresponding clean spec-
trogram.

Weninger et al. [11] employed deep bidirectional
Long Short-Term Memory (biLSTM) de-noising auto-encoders
(DAE) to achieve blind feature space dereverberation. In a
recent study [12] wide residual network (WRN) architecture
was employed for reducing the reverberation/noise effect and
achieved promising results. Inspired by the recent success of
convolutional neural networks (CNN) based U-Net architec-
ture in many image processing applications, Ernst et al. [13]
presented two variations of such networks: one of them has
encoder-decoder network with skip connections and a gener-
ative adversarial network (GAN) with U-Net as generator. By
applying CNN based architecture they succeeded to preserve
global and local information in the reconstruction successfully
and achieved superior results against the competing methods.

Following the success of U-Net based architecture and
demonstrated success of such architecture in our previous
speech enhancement study [14], we adopt similar network
structure for the dereverberation task as well. However along
with the aim of fulfilling the low-latency requirement an archi-
tecture is designed to maintain the number of trainable param-
eters limited. To perform in-dept quality and processing time
performance comparison we reimplement the study [15] which
is based on inverse filter estimation method called weighted pre-
diction error (WPE) algorithm with a DNN-based spectrum es-
timator to make the conventional WPE algorithm successfully
work for very short observed data. This choice makes the study
a very good candidate for bench marking our proposed low-
latency dereverberation system. In this paper, we propose a sim-
ple and effective CNN based U-Net architecture which operates
on T-F domain and try to have relatively low processing window
in the temporal dimension and construct an architecture tailored
for the corresponding input. We choose to concentrate on mag-
nitude prediction by disregarding phase information. Our pro-
posed network includes encoder and decoder layers which ful-
fil the downsampling and upsampling of the input data respec-
tively. Log-spectral distance (LSD) metric is used as the loss
function of the training. We analyse the objective speech qual-
ity of the systems and further investigate the processing time
of baseline systems with respect to the proposed system at in-
ference time. Moreover we investigate the performance of the
proposed system under various latency conditions.

This paper is organized as follows: We first describe the
overview of the system and the details of the proposed network
architecture in Section 2. And in Section 3 experimental details
are explained as well as the information about the dataset and
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Figure 1: System overview. y is the input reverberated signal
and Y is LPS of the signal and X̂ is estimated LPS which com-
bined with reverberated phase YP to get estimated signal x̂.

baseline methods. We present the results and some analysis in
Section 4 and Section 5 concludes the paper.

2. Proposed System
2.1. System Overview

The mapping function from reverberated to clean feature space
can be learned by means of a DNN which is trained on a dataset
of parallel reverberated and clean speech files. As an input to the
network we use log-power spectrogram (LPS), Y which can be
obtained after applying a short-time Fourier transform (STFT)
to the input noisy waveform, y to get magnitude YM and phase
YP and then calculated as Y = log(|YM |2).

Within the scope of this study, at inference time, we only
forward propagate the Y features through the network and re-
construct the enhanced signal x̂ by applying the inverse STFT
with estimated signal magnitude, X̂M and reverberated signal
phase, YP as shown in Figure 1.

2.2. Network Architecture

The proposed network architecture is illustrated in Figure 2. To
encode the input features we deploy 12 2-dimensional convo-
lution (conv2d) layers named as (e1-e12) and to decode we ap-
ply 8 2-dimensional sub-pixel convolution (subconv2d) layers
named as (d1-d8). The sub-pixel convolution layers are success-
fully applied to speech super-resolution and speech enhance-
ment tasks [16, 14]. The main idea is to compute more feature
channels on the convolution layer and resize them into the tar-
get upsample dimension. To each layer we apply leaky rectified
linear unit (LReLU) activation function followed by batch nor-
malization. Downsampling is applied only to spectral dimen-
sion firstly and then it is applied to temporal dimension. The
detailed stride size, kernel size, and number of channel for each
layer are described on Table 1. For the decoder layers (d1-d11)
we apply skip-connections with corresponding encoder layers
in reverse order which are (e11-e1), respectively. Moreover we
apply dropout to the first 4 layers (d1-d4) with a probability rate
of 0.5.

For the training loss, we experiment three types of func-
tions, namely L1, L2 norms and log-spectral distance (LSD).
Our overall testing shows that LSD yields slightly better results
for dereverb tasks. In general terms, LSD measures the distance
between two spectrograms in decibels, and it is defined as fol-
lows:

lossLSD =
1

T

T∑
i=1

√√√√ 1

S

S∑
j=1

[X(i, j)− X̂(i, j)]2 (1)

where X and X̂ are the clean and estimated LPS, respectively

Table 1: Detailed configuration of the proposed network archi-
tecture for each layer.

Layer Kernel
No.

Kernel
Size

Stride Output
Shape

Input - - - (16, 256, 1)
e1 64 (5, 7) (1, 2) (16, 128, 64)
e2 128 (3, 5) (1, 2) (16, 64, 128)
e3 128 (3, 3) (1, 2) (16, 32, 128)
e4 128 (3, 3) (1, 2) (16, 16, 128)
e5 128 (3, 3) (1, 2) (16, 8, 128)
e6 128 (3, 3) (1, 2) (16, 4, 128)
e7 128 (3, 3) (1, 2) (16, 2, 128)
e8 128 (3, 1) (1, 2) (16, 1, 128)
e9 256 (3, 1) (2, 1) (8, 1, 256)
e10 256 (3, 1) (2, 1) (4, 1, 256)
e11 256 (3, 1) (2, 1) (2, 1, 256)
e12 256 (1, 1) (2, 1) (1, 1, 256)
d1 + e11 256 (1, 1) (1, 1) (2, 1, 512)
d2 + e10 256 (1, 1) (1, 1) (4, 1, 512)
d3 + e9 256 (1, 1) (3, 1) (8, 1, 512)
d4 + e8 128 (1, 1) (3, 1) (16, 1, 256)
d5 + e7 128 (1, 1) (3, 1) (16, 2, 256)
d6 + e6 128 (1, 1) (3, 1) (16, 4, 256)
d7 + e5 128 (1, 1) (3, 3) (16, 8, 256)
d8 + e4 128 (1, 1) (3, 3) (16, 16, 256)
d9 + e3 128 (1, 1) (3, 3) (16, 32, 256)
d10 + e2 128 (1, 1) (3, 3) (16, 64, 256)
d11 + e1 64 (1, 1) (3, 3) (16, 128, 128)
d12 1 (1, 1) (3, 5) (16, 256, 1)

and T is the number of frames and S is the number of spectral
bins.

3. Experiments
3.1. Dataset

The dataset that we use in this study is provided by the RE-
VERB challenge [5] organizers. It consists of simulated and
real data. The simulated test data is created by mixing the
speech data from WSJCAM0 corpus [17] with three Room Im-
pulse Renspnse (RIR) whose reverberation time (RT60) is mea-
sured as 0.25s, 0.5s, and 0.7s at two source-microphone dis-
tances: far (200 cm) and near (50 cm). Moreover a stationary
of noise added to the mixtures with a SNR of 20dB. The sim-
ulated training data is created by using 24 RIRs whose RT60

ranges from 0.2s to 0.8s. The real data is from MC-WSJ-AV
corpus [18] which is captured in a reverberant meeting room
with a RT60 of 0.7s at two source-microphone distances: far
(250 cm) and near (100 cm).

3.2. Preprocessing and Training Setup

The spectral representation is obtained by applying 512-point
STFT with a Hanning window of size 512 and a hop size of 256
to the audio files that are sampled at 16kHz. Only the 257-point
STFT magnitudes are considered by removing the symmetric
half. We remove the last STFT point as well which yields a
power-of-2 input dimension. In order to achieve a fixed dimen-
sion for the processing of both train and test sets, we use 16
frames of clips which in turn creates an input dimension of 16
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Figure 2: Proposed network architecture.

× 256 × 1 processing window. We choose relatively small, 16
frame-window (0.256 sec), on the temporal domain in order to
meet our low-latency constraint. The input to the network are
normalized to have zero mean and unit variance.

The network is trained with the Adam optimizer [19] with
a batch size of 64 and learning rate of 0.0001 for 50 epochs.
The decay rates of optimizer are β1 = 0.5 and β2 = 0.9. The
weights of the network are initialized from the normal distribu-
tion with zero mean and 0.02 standard deviation [14].

3.3. Baseline Methods and Evaluation Metric

We compare our proposed approach with a system that utilizes
DNN-based spectrum estimation to construct linear inverse fil-
ters by using WPE [15]. The baseline system that we refer as
DNN-WPE, is trained with the dataset described in Section 3.1
by following the corresponding experimental configuration that
they proposed.

In conventional WPE the filter that is used to construct
desired signal from the reverberated signal, can be effectively
estimated in the maximum likelihood sense. It assumes that
the desired signal has a zero-mean complex Gaussian distribu-
tion with a time varying variance called power spectral density
(PSD) which is an unknown parameter to be estimated. How-
ever it is addressed that [15] if the duration of the data limited
the error in PSD estimation degrades significantly. To overcome
the problem, rather than relying on the iterative optimization
procedure to estimate the PSD, a DNN is utilized hence suc-
cessful signal estimation is achieved.

The spectral representation is obtained within a Hanning
window of size 512 and a hop size of 128 to the audio files that
are sampled at 16kHz.

As for the DNN architecture, unidirectional Long Short
Term Memory (LSTM) is used for the first layer which is fol-
lowed by two fully-connected layers with ReLU activations.
The number of memory cells in the LSTM is 500, and the num-
ber of nodes in the fully-connected layers is 2048. The net-
work is trained by standard stochastic gradient decent (SGD)
algorithm using the MMSE cost function. The input and output

features of the network were log amplitude spectra and the esti-
mated output values are used to reconstruct the dereverberated
signal after the inference. The processing window length is 11
frames which is generated by combining the features of 5 left
and 5 right context frames of the current frame.

Several metrics are used for the objective evaluation of
the dereverberation systems. For the scope of this study we
use; cepstral distance (CD) [20], log likelihood ratio (LLR)
[20], frequency-weighted segmental SNR [20], Speech -to-
reverberation modulation energy ratio (SRMR) [21] metrics.
For real evaluation data, only the non-intrusive SRMR metric
is used because only SRMR metric does not require ground
truth of the target speech. For CD and LLR lower values in-
dicate better performance whereas for FWSegSNR and SRMR
higher values are expected ideally. In order to evaluate latency
and processing time of the systems, the length of the processing
window and real-time factor (RTF) are used respectively. We
define the latency (L) as the summation of the shift length of
the processing window (W) and the duration of time needed to
process it. RTF is the most common speed performance met-
ric for speech processing applications and defined as the ratio
of processing time of the input over the actual duration of the
input. Any application is considered real-time if its RTF is less
than 1. The computer that is used for all latency and RTF cal-
culations has an Intel Xeon Gold 6130 CPU @ 2.10GHz and a
GeForce 2080 RTX Ti, 24GB GPU.

4. Results and Discussion
We first analyze the objective speech quality and processing
time for the baseline and proposed system on the simulated eval-
uation dataset as shown in Table. 2. For the proposed method,
the results of different size of overlap are presented. That is to
say, Proposed{1, 2, 4, 8, 16} stands for the systems that us-
ing {1, 2, 4, 8, 16} frames shifted-processing. We also include
some results from the state-of-the-art papers that use the same
training and evaluation of REVERB challenge dataset. The
baseline DNN-WPE system is worse than the proposed systems
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Table 2: Performance comparison of the systems on simulated evaluation set. Values are averaged out for room types (1, 2, 3) and
microphone positions (near, far). W: Window Length (ms), L: Latency (ms), RTF: Real-time Factor. Proposed{1, 2, 4, 8, 16} stands
for the systems that using {1, 2, 4, 8, 16} frames shifted-processing.

CD LLR FWSegSNR SRMR W/L (ms) RTF

Unprocessed 3.97 0.58 3.62 3.68 - -

Cauchi et al. [6] 3.55 0.59 6.09 4.29 - -
Gonzalez et al. [7] 4.38 0.43 4.39 5.09 - -
Wisdom et al. [8] 3.57 0.57 7.07 4.55 - -

Xiao et al. [9] 2.50 0.50 7.55 5.77 110/- -
Ribas et al. [12] 3.59 0.47 4.80 3.59 2000/- -

Ernst et al. (aU-Net+GAN) [13] 2.50 0.41 10.79 4.88 2048/- -

DNN-WPE 2.92 0.39 7.53 4.68 88/89 0.01
Proposed16 2.50 0.33 11.62 5.09 256/271 0.06
Proposed8 2.47 0.32 11.72 5.11 256/143 0.12
Proposed4 2.49 0.33 11.66 5.11 256/79 0.23
Proposed2 2.52 0.33 11.53 5.08 256/47 0.47
Proposed1 2.59 0.34 11.25 5.05 256/31 0.93

Table 3: Performance comparison of the systems on real evalu-
ation dataset. Values are averaged out for microphone positions
(near, far).

SRMR

Unprocessed 3.18

Cauchi et al. [6] 4.82
Gonzalez et al. [7] 4.70
Wisdom et al. [8] 4.89

Xiao et al. [9] 4.36
Ribas et al. [12] 3.24

Ernst et al. (aU-Net+GAN) [13] 5.58

DNN-WPE 4.97
Proposed16 5.55
Proposed8 5.37
Proposed4 5.32
Proposed2 5.26
Proposed1 5.06

in terms of speech quality measures but has the smallest pro-
cessing window and the best RTF score which makes it a good
candidate for the both offline and online systems. The first sys-
tem, Proposed16 that uses 16 frames (256 ms) block-by-block
processing and at the following rows we keep reducing the shift
size and lower the latency concurrently while observing RTF of
the systems. Although the proposed network always processes
16 frames (256 ms) of the full input window and produces the
corresponding prediction, only the last shift-size portion of the
prediction is actually used for the output. Note that, in the ini-
tial few frames where there is not enough input data available
to reach the input buffer size, it is filled by repeating the very
first shift-size portion of the input. It can be observed that our
proposed system is able to operate at real-time with a very low
latency duration as little as 31 ms and with a tolerable degra-
dation on speech quality. As it can be seen clearly, the ”Pro-
posed8” system has the best speech quality measures in terms
of CD, LLR, and FWSegSNR however system [9] has the best
result in terms of SRMR. The system [13] has comparable re-

sults in terms of speech quality measures but has 8 times as large
processing window as of the proposed systems.

By applying shifted-processing window we compromise
the RTF value as compared to the baseline system but we
achieve relatively good performance in terms of speech quality
and intelligibility with the proposed simple but effective DNN
architecture. Moreover, low latency and acceptable RTF value
make the proposed system a good candidate for the low-latency
required systems. We have to note that for the DNN-WPE and
the proposed systems both operate on the spectral domain and
the latency calculation includes the sum of the duration of spec-
tral featurization and reconstruction.

In Table 3, you can see speech quality performance compar-
ison of the baseline and proposed systems as well as the state-
of-the-art systems on real evaluation data. Since the ground
truth is not available for the real data only SRMR metrics are
reported. We have to note that all the proposed systems outper-
form the baseline DNN-WPE system and all of state-of-the-art
systems except for the system [13], while the gap against [13]
is very small. Proposed16 outperforms the first four state-of-
the-art systems and comparable to Ernst’s. Whereas, given the
significant difference of processing windows between these sys-
tems, this comparable performance result is tolerable in the ex-
pense of decreased latency. Moreover, we have to note that the
proposed system has higher degradation with smaller latency on
the real data compared to the simulated data.

5. Conclusion

In this paper we propose a simple but effective U-Net CNN ar-
chitecture specifically for the dereverberation systems working
under low-latency condition. In accordance with this purpose
we try to keep the proposed architecture moderate and choose
to operate on spectral domain for faster processing. We achieve
superior results as opposed to the a baseline system using DNN
assisted WPE. And it has been shown that the proposed system
has a real-time operation under extreme low-latency conditions
while maintaining performance quality of the system better in
the most and comparable for the rest of the performance metrics
to the baseline and state-of-the-art dereverberation systems.
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