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Abstract
Text-independent speaker verification against short utterances
is still challenging despite of recent advances in the field of
speaker recognition with i-vector framework. In general, to get
a robust i-vector representation, a satisfying amount of data is
needed in the MAP adaptation step, which is hard to meet under
short duration constraint. To overcome this, we present an end-
to-end system which directly learns a mapping from speech fea-
tures to a compact fixed length speaker discriminative embed-
ding where the Euclidean distance is employed for measuring
similarity within trials. To learn the feature mapping, a modi-
fied Inception Net with residual block is proposed to optimize
the triplet loss function. The input of our end-to-end system is a
fixed length spectrogram converted from an arbitrary length ut-
terance. Experiments show that our system consistently outper-
forms a conventional i-vector system on short duration speaker
verification tasks. To test the limit under various duration condi-
tions, we also demonstrate how our end-to-end system behaves
with different duration from 2s-4s.
Index Terms: speaker verification, triplet loss, Inception net-
work, short duration

1. Introduction
Speaker verification (SV), which offers a natural and flexible
solution for biometric authentication, has been actively studied
in the past decades. According to different application scenar-
ios, speaker verification can be categorized into text-dependent
and text-independent [1]. The text-dependent SV system re-
quires the same set of phrases for enrollment and test. Com-
bined with a keyword spotting system (KWS), text-dependent
SV can be integrated into an intelligent personal assistant such
as Apple Siri, Amazon Alexa, Google Now and Microsoft Cor-
tana, where KWS and text-dependent SV serves as a keyword
voice-authenticated wake-up to enable the following voice in-
teraction [2, 3, 4]. Recent advancements on text-dependent SV
tasks have been reported using deep neural networks (DNNs)
and recurrent neural networks (RNNs) for speaker discrimi-
native or phonetic discriminative network training, where in-
termediate frame-level features such as d-vectors, bottleneck
activations or phonetic alignments are extracted to formulate
utterance-level speaker representations [4, 5, 6]. More recently,
DNNs, RNNs and convolution neural networks (CNNs) with
a end-to-end loss logP (accept/reject) are investigated in the
global keyword (e.g.,“OK Google” and “Hey Cortana”) speaker
verification tasks [2, 3], and are shown to achieve better perfor-
mance compared with conventional techniques such as GMM-
UBM and i-vector/PLDA.

* Chunlei Zhang performed the work while he was an intern at
Microsoft Corporation, Redmond, WA.

In the context of text-independent speaker verification, i-
vector/PLDA framework and its variants are still the state-of-
the-art in most of the tasks [6, 7]. In recent two NIST SREs
(e.g., SRE12 and SRE16) and their post-evaluations, almost all
leading systems are based on i-vectors [8, 9]. However, i-vector
systems are prone to have performance degradation when short
utterances are met in enrollment/test phase. Fig.1 is the DET
curves with respect to different durations of test utterances in
CRSS submissions for SRE16 [10]. A clear speaker verifica-
tion performance drop can be found in this analysis. It is not
surprising because more data in the MAP adaption step always
leads to more robust i-vector estimation [11].
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Figure 1: i-vector based system performance versus different
durations in SRE16

To compensate for insufficient information or context mis-
match due to short duration in i-vector based text-independent
SV, several techniques such as replacing the UBM posteriors
with more supervised phonetic DNN posteriors, introducing
of uncertainty into i-vector extraction or employing subspace
GMM (SGMM) and Joint Factor Analysis (JFA) to train pho-
netic context invariant i-vectors are proposed at the acoustic
model level [6, 12, 13]. At a back-end level, length normal-
ization and quality measure function based score calibration are
reported to be effective for this problem [14, 15].

Using different deep learning frameworks with end-to-end
loss functions to train speaker discriminative embeddings has
drawn more attention recently. In [16], DNNs with network-in-
network activations and an empirically designed loss function
achieved better speaker verification performances when 105k
speakers were employed in the network training. More re-
cently, Bi-LSTMs with triplet loss function from face recog-
nition community are reported to achieve better performance
in the “same/different” speaker detection experiment compared
with Bayesian Information Criterion (BIC) and Gaussian Diver-
gence with a small scale dataset [17]. From the results in both
[16, 17], it seems that end-to-end systems with speaker embed-
ding are very promising to have better performances on short
duration compared with i-vector systems.
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In this study, we aim to investigate on a new end-to-end
system for text-independent speaker verification on short utter-
ances. Similar to [18]. we convert each arbitrary length utter-
ance into a fixed length spectrogram by cropping or padding,
and the generated spectrogram is the input feeding into deep
nets. Unlike the system proposed in [17, 19], we introduce a
modified Inception network with residual connections to gener-
ate speaker embedding, which is the state-of-the-art deep learn-
ing architecture in image classification [20]. For the end-to-end
objective training function, the same triplet loss as [17, 19] is
employed while new constraint in triplet sampling is imposed to
make the training run smoothly. In addition, our training proce-
dure utilizes recent advancements in deep learning community
such as batch normalization, network reduction to solve the dif-
ficulty of training with triplet loss [20, 21]. To measure the simi-
larity within trials, Euclidean distance is utilized on speaker em-
beddings. Finally the end-to-end system is evaluated on speaker
verification task with a Short Duration Corpus.

Although more detailed explanations and analysis can be
found throughout this paper, let us first summarize the contribu-
tions here: a) providing a novel deep learning based method for
text-independent speaker verification other than i-vector frame-
work, especially for short utterance; b) this end-to-end approach
results in considerably simplified systems requiring fewer con-
cepts and heuristics; c) create a possibility for a lot of applica-
tions such as speaker change detection, speaker diarization and
speaker adaption for speech recognition etc.

2. End-to-End speaker verification system
This section describes an overview architecture of our proposed
end-to-end speaker verification, which is inspired by recent ad-
vancements in both face recognition and speaker recognition
[17, 19]. The detail of its essential components and modifica-
tions for speaker embedding network training are presented in
the following sections.

2.1. System structure

Fig.2 depicts the structure of our proposed end-to-end system
for speaker verification. The system consists of a batch input
layer and a deep architecture (can be flexible to apply many dif-
ferent deep nets) followed byL2 normalization, which results in
the speaker embedding for speaker verification. The L2 Norm
constrains the speaker embedding into an unit hypersphere to
make the deep learning objective optimization and final simi-
larity measure within certain realms.

Given an already defined deep architecture with parame-
ters θ, and considering it as a black box function that maps an
utterance into a feature space Rd, such that the distance be-
tween paired utterances of the same speaker ID is small, in the
meanwhile the distance between paired utterances of different
speaker IDs is large for any channel and SNR conditions etc.
To simplify the expression, the embedding is represented by
fθ(x) ∈ Rd. With L2 normalization, the d-dimensional feature
vector satisfies the constrain, i.e., ‖fθ(x)‖2 = 1. The network
parameters θ is learned with an objective function. To achieve
the objective of learning a speaker discriminative embedding
from an utterance, triplet loss is employed in this study.

2.2. Triplet loss

To make an utterance xai (anchor) of a specific person more
similar to all other utterances xpi (positive) of the same person
than it is to any utterance xni (negative) of any other person,
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Figure 2: The architecture of our end-to-end triplet loss based
system for text-independent speaker verification.

e.g., the training wants embeddings to follow Equation 1:

‖f(xai )− f(xpi )‖
2
2 + α < ‖f(xai )− f(xni )‖22, (1)

∀(f(xai ), f(xpi ), f(x
n
i )) ∈ T

where α is an empirically defined margin that is enforced be-
tween positive and negative pairs. T is the set of triplets,
(f(xai ), f(x

p
i ), f(x

n
i )) is a triplet. With Equation 1, the triplet

loss is formulated as Equation 2 with the objective to minimize
this loss over the whole set T :

L =
∑
i

[‖f(xai )− f(xpi )‖
2
2 − ‖f(xai )− f(xni )‖22 + α], (2)

2.3. Triplet sampling and selection

Similar to the triplet sampling strategy proposed in [17, 19],
we also have to select triplets which violate the constraint de-
scribed in Equation 1. A change has been made to [17] where
we always randomly select a small number of speakers from the
speaker pool for each epoch. We believe this strategy will make
no difference from training with a large number of epochs. At
the same time, we can observe the performance on validation
set to better monitor the training process.

In our experiment, we sample 60 speakers at one time,
and randomly select 40 utterances for each speaker. Fol-
lowing the same triplet generation method as [17], we have
60x40x39/2=46800 triplets for one epoch. And we further re-
duce the triplet number by only selecting the ones which violate
the constraint of Equation 1 with α = 0.2.

2.4. Inception-resnet-v1 network [20]

The network architecture proposed for our end-to-end sys-
tem training is Inception-resnet-v1, which is the state-of-the-
art framework for image classification tasks in computer vi-
sion community. Compared with the Inception network em-
ployed in the Facenet paper [19], the Inception-resnet-v1 net-
work achieves faster convergence without adding additional
computation complexity. With the introduction of residual con-
nections to the Inception network, the triplet loss training diffi-
culty is alleviated. Fig.3 is a simplified diagram of Inception-
resnet-v1 network, for more details about this very deep CNN
based network architecture, please refer [20]. It should be noted
that the Inception-resnet-v1 is hand-craft designed and only hy-
perparameter which needs to be tuned is the embedding size
controlled by the final fully connected layer. Also, different
network architectures can be applied to our end-to-end system,
such as Inception network and Bi-LSTM which are already
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proved to be effective in similar tasks. In this study, to bet-
ter capture the global identity structure from the spectrogram
feature, we utilize a very deep network architecture–Inception-
resnet-v1.

As mentioned above, we extract forced aligned spectrogram
from variant length speech utterances as the input to Inception-
resnet-v1 network, similar to the strategy proposed in [18]. In
the frequency domain, we reserve 0-5K range, and make the
spectrogram with a height of 160. We set 4s as the length in our
primary speaker verification experiment, with this setup, we can
create a 160×250 2-d image from one utterance. To be clear,
the height and length is based on 16K Hz sample-rate and 512
point FFT. We also explore the speaker discriminative capability
of our end-to-end system with even shorter duration such as 3s
and 2s. On these conditions, the height of spectrogram doesn’t
change, while the length varies according to the duration.
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Figure 3: A simplified architecture of Inception-resnet-v1 net-
work

2.5. Speaker verification evaluation

After the training of the end-to-end system, the embedding can
be considered as a speaker representation and used to measure
the similarity between speakers. In this phase, we use nega-
tive Euclidean distance between pairs as the likelihood score to
make the decision.

S(xenroll, xtest) = −‖f(xenroll)− f(xtest)‖22, (3)

With this score metric for the back-end, a pure end-to-end
speaker verification system is developed. In fact, we still can
utilize the back-end classifiers developed from speaker verifica-
tion community, i.e., the utterance level speaker embedding can
be treated as i-vector, and state-of-the-art PLDA can be applied
straight forward. In our system, PLDA is not utilized since our
embedding is trained in an end-to-end manner.

3. Corpus
The corpus1 that we use for the network training, system vali-
dation and final evaluation is a large collection of speakers con-
sisting of recordings from three different mainstream platforms,
i.e., Android, iPhone and Windows Phone. To better describe
this dataset, the corpus statistics are given in the next section.

1http://kingline.speechocean.com/exchange.php?id=
1191&act=view

3.1. Corpus statistics

The corpus used in our experiments consists of about 2800
speakers where there are around 300 short utterances from each
speaker. The duration distribution are illustrated in Fig.4 and the
mean duration is 4s. The corpus is split into training, validation,
and test with the ratio of 60%, 20%, and 20%, respectively.

Table 1: Corpus statistics

Android iPhone WinPhone total mean/s
training 954 470 249 1673 4.02

validation 318 156 83 557 3.98
test 319 158 83 560 3.97

Figure 4: Duration distributions of training, validation, test set.

3.2. Trial list for validation and test

To validate and monitor our system training, we select 180
speakers from the validation set and create 190 target and 179
nontarget trials for each speaker. For the system performance
evaluation, 450 speakers are picked from the test pool. For each
speaker, 10 utterances are sampled as the enrollment data. Other
than the 10 enrolled utterances, we sample 80 utterances each
from the same and different speakers. In total, we create 720K
trials for testing.

4. Experiments
4.1. i-vector baseline

The baseline is a standard i-vector system that is based on the
GMM-UBM Kaldi SRE10 V1 [22]. The front-end features con-
sist of 20 MFCCs with a frame-length of 30ms that are mean-
normalized over a sliding window of up to 3 seconds. Delta
and acceleration are appended to create 60 dimension feature
vectors. Unvoiced parts of the utterances are removed with en-
ergy based voice activity detection. The UBM is a 1024 com-
ponent full-covariance GMM. The system uses a 400 dimension
i-vector extractor. Prior to PLDA scoring, i-vectors are centered
and length normalized. We use all the training dataset for the
UBM, T-Matrix and PLDA training.

4.2. Performance versus epoch number on validation set

To observe the performance of our end-to-end system on the
validation set in the training, two different metrics are utilized
in the experiment. The first one is validation rate (VAL) at a
specified false accept rate (FAR), follow the setup in Facenet
paper, “VAL@10−3FAR” is adopted. The definition of VAL
and FAR is given as:

VAL =
#TA

#Target
,FAR =

#FA

#Nontarget
, (4)
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where #TA,#FA,#Target,#Nontarget are the number of
true accept, false accept, target trial and nontarget trial respec-
tively. By setting a threshold such that a very low FAR (i.e.,
10−3) is fixed, VAL will increase with the training progress.

Another metric which we use is EER. The stop criteria for
training is based on these metrics. In fact, as shown in Fig.5,
VAL still goes up even EER saturates after 60 epochs. In the
test set, we get better performance from the model with a higher
VAL although the EER is almost the same.

20 40 60 80 100 120
0

0.5
VAL @ 10-3 FAR

20 40 60 80 100 120

Epoch number

0

0.1

0.2

EER on Valid Set

Figure 5: The speaker verification performance across epochs.
learning rate=0.1 is used for the first 36 epochs, 0.01 is used
until 60 epochs, since than a decay rate 0.5 is applied every 20
epochs, and the RMSProp [23] optimizer is employed through-
out the learning process.

4.3. Performance on test set

In Table 2 we report the primary results of our end-to-end sys-
tem on 4s condition. The best end-to-end system gives 17.0%
relative improvement over the i-vector/PLDA baseline. Equal
weights score fusion of “e2e 120 E” and “i-vector/PLDA” fur-
ther boost the performance by 19.8% due to the significant ar-
chitectural differences between our end-to-end system and the
i-vector baseline.

Table 2: Utterance level speaker verification performance on
test set, results from 3 different training stages (e.g., 40, 80 and
120 epochs) are presented.

system e2e/40 E e2e/80 E e2e/120 E i-vector/PLDA fusion
EER 3.98% 3.26% 2.97%% 3.58% 2.87%

4.4. Performance against shorter duration

We present the system performance on different duration con-
ditions in Fig.6. More specifically, 4s, 3s and even shorter 2s
conditions are tested with our end-to-end framework. A DET
curve for the i-vector/PLDA baseline is also illustrated for sys-
tem comparison. In Fig.6, a performance degradation is ob-
served when we cut the duration from 4s to 3s or 2s. In terms
of EER, the 3s condition seems to have a comparative perfor-
mance with the i-vector/PLDA system (slightly better: 3.43%
VS. 3.58%). And it seems that our end-to-end system performs
better on short duration condition as the mean duration of cor-
pus is around 4s. It is also interesting to see that three end-to-
end systems behave consistently: better performance in False
Alarm rates while worse performance in False Reject dimen-
sion compared with the i-vector/PLDA system.

4.5. Performance by number of enrollment utterances

It should be noted that both validation and test trial lists are at
utterance level. In typical speaker verification, there is always
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Figure 6: DET plots on different duration conditions.

an enrollment step using multiple enrolled utterances to build
robust speaker models. In our experiments, we average scores
across enrollment utterances to make a final speaker level de-
cision. And this is an alternative option besides averaging of
i-vectors/embeddings in enrollment step [24].

We present the result with different number of utterances
for enrollment in Table 3. As mentioned in Sec.3.2, we per-
form enrollment action at score level by averaging scores from
the same test utterance. More than 37% of relative improve-
ment has been achieved when the number of enrolled utterance
increases from 1 to 10. From Table 3, a relatively larger perfor-
mance boost is observed when 2 and 5 utterances are enrolled,
while the benefit of multiple utterances for enrollment seems
to be saturate after 5 utterances. The observation can be a guid-
ance for design of many real world speaker verification systems,
especially when only limited computational resource can be uti-
lized.

Table 3: Speaker level speaker verification performance on test
set, with 1, 2, 5, 10 utterances for enrollment in terms of EER.

# enroll utts 1 2 5 10
i-vector/PLDA 3.58% 2.76% 2.03% 1.97%

end-to-end 2.97% 2.41% 1.94% 1.84%

5. Conclusion and future work
In this study, we present a novel end-to-end text-independent
speaker verification system. Triplet loss function allows us
to optimize the entire system in an end-to-end manner with-
out introducing many concepts and heuristics. A very deep
CNN based network architecture called Inception-resnet-v1 is
successfully employed for the training of speaker discrimina-
tive embedding. As a result Euclidean distance is directly ap-
plied to measure similarity within trials, which is essential for
our end-to-end system. It is shown from experiments that our
proposed end-to-end system achieves consistently better perfor-
mance over the i-vector system.

We believe that this paper shows potential of our framework
for speaker recognition and related area. There are still a lot of
room for improvements in our system, by different neural net-
work architectures, loss functions, vector normalization, etc. At
the same time, this approach can be directly applied to many
other applications such as speaker change detection, speaker di-
arization, and speaker adaption for speech recognition. Other
directions like language identification or emotion recognition
from speech are also promising. The results here show both
meaningful advancements, as well as a point to direction for
future research.
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