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Abstract

The elliptical range theorem asserts that the field of values (or numerical range) of a two-by-two
matrix with complex entries is an elliptical disk, the foci of which are the eigenvalues of the given matrix.
Many proofs of this result are available in the literature, but most, with one exception, are computational
and quite involved. In this note, it is shown that the elliptical range theorem follows from the properties
of plane algebraic curves and a straightforward application of a well-known result due to Kippenhahn.

1 Introduction

If A is an an n-by-n matrix, then the field (of values) or the numerical range of A, denoted by F (A), is
defined by F (A) = {x∗Ax : x∗x = 1} ⊆ C. The field possesses many desirable properties and, as such, is
useful in operator theory and other subjects including quantum computing (e.g., see Horn and Johnson [3]
and references therein). In particular, the celebrated Toeplitz-Hausdorff theorem asserts that the field is
convex.

Most proofs of this result begin by observing that the problem reduces to the two-dimensional case
[1, 2, 3, 6]. In this particular case we obtain the following fundamental result, which is known as the
elliptical range theorem.

Theorem 1.1 [Elliptical range theorem] If A is a two-by-two matrix with complex entries and eigenvalues
λ1 and λ2, then F (A) is an elliptical disk centered at (1/2) tr(A), has foci λ1 and λ2, and has minor axis
length equal to

√

tr (A∗A)− |λ1|2 − |λ2|2.

There are many proofs of this result [2, 3, 4, 7, 8] and most, with one exception [7], are computational
and quite involved. In the sequel, it will be shown that the elliptical range theorem follows from properties
of plane algebraic curves and a straightforward application of a well-known result due to Kippenhahn.

2 Background

In this section we recall relevant background.

2.1 Algebraic Curves

If p ∈ C[x, y] is a polynomial of degree n, then the plane algebraic curve with respect to p, denoted by γ = γp,
is defined by

γ =
{

(x, y) ∈ C
2 | p(x, y) = 0

}

.
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If P ∈ C[x, y, z] is a homogeneous polynomial of degree n, then the plane projective curve with respect to P,
denoted by κ = κP , is defined by

κ =
{

(x, y, z) ∈ CP
2 | P (x, y, z) = 0

}

.

The degree of γ (degree of κ), denoted by deg γ (respectively, deg κ), is defined by deg γ = deg p (respectively,
deg κ = degP ). The real part of a plane algebraic curve γ (plane projective curve κ) is defined by Re(γ) =
{

(x, y) ∈ R2 | p(x, y) = 0
}

(respectively, Re(κ) =
{

(x, y, z) ∈ RP
2 | P (x, y, z) = 0

}

).
If p ∈ C[x, y], then H [p](x, y, z) := zdeg pp(x/z, y/z) is a homogeneous polynomial. If P ∈ C[x, y, z]

is a homogeneous polynomial, then B[P ](x, y) := P (x, y, 1) is a bivariate polynomial. Thus, every plane
algebraic curve can be identified with a plane projective curve and vice-versa.

If κP is a plane projective curve of degree n, then the dual of κP , denoted by (κP )
δ = κP δ , is the unique

plane projective curve of degree m such that

P δ(u, v, w) = 0 (1)

if and only if the line
ux+ vy + wz = 0 (2)

is tangent to κP . It is well-known that ((κP )
δ)δ = κP .

To find the point-equation P (x, y, z) = 0 given the tangential equation P δ(u, v, w) = 0, one can eliminate
the variables u, v, w, λ from (1), (2), and

∂P δ

∂u
+ λx = 0,

∂P δ

∂v
+ λy = 0,

∂P δ

∂w
+ λz = 0 (3)

(see, e.g., Salmon [9, p. 76]).

2.2 The Field of Values

Let A be an n-by-n matrix with complex entries. The following properties are well-known and otherwise
easy to establish:

P1 F (αA+ βI) = αF (A) + β [3, Properties 1.2.3 & 1.2.4].

P2 If A is normal, i.e., if A∗A = AA∗, then F (A) = conv (σ(A)), in which σ(A) denotes the spectrum
of A [3, Property 1.2.9].

P3 If U is a unitary matrix, i.e., if U∗U = UU∗ = In, then F (U∗AU) = F (A).

The following result is due to Kippenhahn [5].

Theorem 2.1 ([5, Theorem 10]) If A is an n-by-n matrix with complex entries, then there is a plane
algebraic curve κP of class n such that

F (A) = conv
(

Re(γP (x,y,1))
)

.

Furthermore, if H1 := (A+A∗)/2 and H2 := (A−A∗)/(2i), then

P δ = |H1u+H2v + Inw| . (4)
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3 The Proof

Proof of Theorem 1.1. Let A be a two-by-two matrix with complex entries and eigenvalues λ1 and λ2. We
follow the cases established by [7].

If A is normal, then, as a consequence of P2, F (A) = conv (λ1, λ2), which can be viewed as an ellipse
with foci {λ1, λ2} and minor axis length of zero.

Suppose A is not normal. Without loss of generality, we may assume that trA = 0 (othwerwise, we can
replace A with A−(trA/2)I2 in view of P1). By the Schur decomposition theorem, the matrix A is unitarily
similar to the matrix

B =

[

λ b
0 −λ

]

, b 6= 0.

Consider the following cases:

(i) λ = 0. Without loss of generality, we only consider the case when b = 1 (if b 6= 1, one may consider
the matrix B/b in view of P1). A straightforward computation shows that

P δ = |H1u+H2v + Inw| = −u2

4
− v2

4
+ w2.

Eliminating the variables u, v, w, and λ from (1), (2), and (3) yields the plane projective curve

κP =

{

(x, y, z) ∈ CP
2 | x

2

1
4

+
y2

1
4

− z2 = 0

}

.

The real plane algebraic curve

Re(γP (x,y,1)) =

{

(x, y) ∈ R
2 | x

2

1
4

+
y2

1
4

− 1 = 0

}

is a circle centered at the origin with diameter

2

(

1

2

)

= 1 =
√
trB∗B.

(ii) λ 6= 0. Without loss of generality, we only consider the case when λ = 1 (if λ 6= 1, one may consider
the matrix B/λ in view of P1). A straightforward computation shows that

P δ = |H1u+H2v + Inw| = −
(

1 +
bb̄

4

)

u2 − bb̄

4
v2 + w2.

Eliminating the variables u, v, w, and λ from (1), (2), and (3) yields the plane projective curve

κP =

{

(x, y, z) ∈ CP
2 | x2

1 + bb̄
4

+
y2

bb̄
4

− z2 = 0

}

.

The plane algebraic curve

Re(γP (x,y,1)) =

{

(x, y) ∈ R
2 | x2

1 + bb̄
4

+
y2

bb̄
4

− 1 = 0

}

is an ellipse centered at the origin with minor axis length equal to

2

(√
bb̄

2

)

= bb̄ =
√

trB∗B − 12 − (−1)2

and foci

±c =

√

(

1 +
bb̄

4

)

− bb̄

4
= ±1.
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